Online Ship Rolling Estimation Using a Grey Support Vector Machine Prediction Scheme
نویسندگان
چکیده
An online sequential grey predictive scheme is proposed by embedding the supporting vector machine (SVM) in a grey prediction framework. The grey processing of time series alleviates the unfavorable effects resulted from uncertainty available in the measurement data and the nonlinear and self-adaptation natures of SVM enable accurate approximation of the scheme. The resulted grey SVM predictor can be utilized to represent the nonlinear mapping influenced by uncertainty. The Ship’s motion at sea is affected by various time-varying environmental factors. As a result, the ship’s rolling motion is a complex nonlinear system which is hard to be predicted precisely by custom approaches. In this paper, the grey SVM predictor is utilized for online ship rolling angle prediction. The prediction simulation is performed based on the measurement data from scientific research and training ship Yu Kun. Simulation results have demonstrated that the proposed method can give predictions for ship rolling motion in real time with high accuracy and satisfactory stability.
منابع مشابه
Online Voltage Stability Monitoring and Prediction by Using Support Vector Machine Considering Overcurrent Protection for Transmission Lines
In this paper, a novel method is proposed to monitor the power system voltage stability using Support Vector Machine (SVM) by implementing real-time data received from the Wide Area Measurement System (WAMS). In this study, the effects of the protection schemes on the voltage magnitude of the buses are considered while they have not been investigated in previous researches. Considering overcurr...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملThe Porosity Prediction of One of Iran South Oil Field Carbonate Reservoirs Using Support Vector Regression
Porosity is considered as an important petrophysical parameter in characterizing reservoirs, calculating in-situ oil reserves, and production evaluation. Nowadays, using intelligent techniques has become a popular method for porosity estimation. Support vector machine (SVM) a new intelligent method with a great generalization potential of modeling non-linear relationships has been introduced fo...
متن کاملApplication of Genetic Algorithm Based Support Vector Machine Model in Second Virial Coefficient Prediction of Pure Compounds
In this work, a Genetic Algorithm boosted Least Square Support Vector Machine model by a set of linear equations instead of a quadratic program, which is improved version of Support Vector Machine model, was used for estimation of 98 pure compounds second virial coefficient. Compounds were classified to the different groups. Finest parameters were obtained by Genetic Algorithm method ...
متن کاملMachine Learning Algorithm for Prediction of Heavy Metal Contamination in the Groundwater in the Arak Urban Area
This paper attempts to predict heavy metals (Pb, Zn and Cu) in the groundwater from Arak city, using support vector regression model(SVR) by taking major elements (HCO3, SO4) in the groundwater from Arak city. 150 data samples and several models were trained and tested using collected data to determine the optimum model in which each model involved two inputs and three outputs. This SVR model f...
متن کامل